A Preconditioned Iteration Method for Solving Sylvester Equations

نویسندگان

  • Jituan Zhou
  • Ruirui Wang
  • Qiang Niu
چکیده

A preconditioned gradient-based iterative method is derived by judicious selection of two auxiliary matrices. The strategy is based on the Newton’s iteration method and can be regarded as a generalization of the splitting iterative method for system of linear equations. We analyze the convergence of the method and illustrate that the approach is able to considerably accelerate the convergence of the gradient-based iterative method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Pmhss Iteration Methods for Continuous Sylvester Equations

The modified Hermitian and skew-Hermitian splitting (MHSS) iteration method and preconditioned MHSS (PMHSS) iteration method were introduced respectively. In the paper, on the basis of the MHSS iteration method, we present a PMHSS iteration method for solving large sparse continuous Sylvester equations with non-Hermitian and complex symmetric positive definite/semi-definite matrices. Under suit...

متن کامل

Preconditioned Galerkin and minimal residual methods for solving Sylvester equations

This paper presents preconditioned Galerkin and minimal residual algorithms for the solution of Sylvester equations AX XB = C. Given two good preconditioner matricesM and N for matrices A and B, respectively, we solve the Sylvester equations MAXN MXBN =MCN. The algorithms use the Arnoldi process to generate orthonormal bases of certain Krylov subspaces and simultaneously reduce the order of Syl...

متن کامل

A Class of Nested Iteration Schemes for Generalized Coupled Sylvester Matrix Equation

Global Krylov subspace methods are the most efficient and robust methods to solve generalized coupled Sylvester matrix equation. In this paper, we propose the nested splitting conjugate gradient process for solving this equation. This method has inner and outer iterations, which employs the generalized conjugate gradient method as an inner iteration to approximate each outer iterate, while each...

متن کامل

Theoretical results on the global GMRES method for solving generalized Sylvester matrix‎ ‎equations

‎The global generalized minimum residual (Gl-GMRES)‎ ‎method is examined for solving the generalized Sylvester matrix equation‎ ‎[sumlimits_{i = 1}^q {A_i } XB_i = C.]‎ ‎Some new theoretical results are elaborated for‎ ‎the proposed method by employing the Schur complement‎. ‎These results can be exploited to establish new convergence properties‎ ‎of the Gl-GMRES method for solving genera...

متن کامل

A Parallel Two-Stage Iteration Method for Solving Continuous Sylvester Equations

In this paper we propose a parallel two-stage iteration algorithm for solving large-scale continuous Sylvester equations. By splitting the coefficient matrices, the original linear system is transformed into a symmetric linear system which is then solved by using the SYMMLQ algorithm. In order to improve the relative parallel efficiency, an adjusting strategy is explored during the iteration ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012